Performance of reclassification statistics in comparing risk prediction models.
نویسندگان
چکیده
Concerns have been raised about the use of traditional measures of model fit in evaluating risk prediction models for clinical use, and reclassification tables have been suggested as an alternative means of assessing the clinical utility of a model. Several measures based on the table have been proposed, including the reclassification calibration (RC) statistic, the net reclassification improvement (NRI), and the integrated discrimination improvement (IDI), but the performance of these in practical settings has not been fully examined. We used simulations to estimate the type I error and power for these statistics in a number of scenarios, as well as the impact of the number and type of categories, when adding a new marker to an established or reference model. The type I error was found to be reasonable in most settings, and power was highest for the IDI, which was similar to the test of association. The relative power of the RC statistic, a test of calibration, and the NRI, a test of discrimination, varied depending on the model assumptions. These tools provide unique but complementary information.
منابع مشابه
Problems with risk reclassification methods for evaluating prediction models.
For comparing the performance of a baseline risk prediction model with one that includes an additional predictor, a risk reclassification analysis strategy has been proposed. The first step is to cross-classify risks calculated according to the 2 models for all study subjects. Summary measures including the percentage of reclassification and the percentage of correct reclassification are calcul...
متن کاملPractice of Epidemiology Problems With Risk Reclassification Methods for Evaluating Prediction Models
For comparing the performance of a baseline risk prediction model with one that includes an additional predictor, a risk reclassification analysis strategy has been proposed. The first step is to cross-classify risks calculated according to the 2 models for all study subjects. Summary measures including the percentage of reclassification and the percentage of correct reclassification are calcul...
متن کاملComparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study
Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...
متن کاملStatistical evaluation of adding multiple risk factors improves Framingham stroke risk score
BACKGROUND Framingham Stroke Risk Score (FSRS) is the most well-regarded risk appraisal tools for evaluating an individual's absolute risk on stroke onset. However, several widely accepted risk factors for stroke were not included in the original Framingham model. This study proposed a new model which combines an existing risk models with new risk factors using synthesis analysis, and applied i...
متن کاملUse of reclassification for assessment of improved prediction: an empirical evaluation.
BACKGROUND An increasing number of studies evaluate the ability of predictors to change risk stratification and alter medical decisions, i.e. reclassification performance. We examined the reported design and analysis of recent studies of reclassification and the robustness of their claims for improved reclassification. METHODS Two independent investigators searched PubMed and citations to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrical journal. Biometrische Zeitschrift
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2011